
AD-A219 586

Report No. 7177

Distributed Heuristics for Maintaining Connectivity in
Mobile Networks (SRNTN-54)

Robert Willis

MAR 3

Prepared By: I
BBN Systems and Technologies Corporation

10 Moulton Street
Cambridge. MA 02138

DL."u-~b.cr.; --A..T.BM4-"f'." ' A
Prepared for: -"-

DARPA/ISTO .
1400 Wilson BI.
Arlington. VA. 22209

Sponsored by:

The Defense Advanced Research Projects Agency
Under Contract No. MDA-903-83-C-0131

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the Army or the United States Government.

q0 03 21 a-m-

Report No. 7177 BBN Systems and Technologies Corporation

Contents

I Introduction

2 Terminology 2

3 Problem Definition 3
3.I Maximum Degree Constraint 3
3.2 A lgorithm ic Issues .. . 3

4 Local Heuristics 5
4.1 Overview and Assum ptions 5

4 .1.1 O verview .. . 5
4.1.2 A ssum ptions . 6

4.2 D ecision R ules . 7
4.3 Stability and Convergence 15
4.4 Speeding Up Convergence 18
4.5 Im plementation in SURAN 22

4.5.1 Expungability 23
4.5.2 Active/Passive States 24
4.5.3 Candidate Indicator 25

5 Areas for Further Research 26

A[) ,T ,T , T

Abstract

In a packet radio network, a packet radio (PR) can establish links to any other PR within heanng range.
butif too many PRs are nearby, its link table may overflow. To maintain connectivity and keep their
link-table sizes feasible it is necessary for PRs to choose a subset of all possible links. This selection
problem resembles the problem of finding spanning trees in a distributed manner. We develop a distributed
heuristic for choosing which links should be retained to keep the network connected. Since the heuristic
uses only local information, it cannot guarantee to keep the network connected in those cases that reqwre
more global information. The heuristic is of interest because it requires less coordination, less information
and. therefore. lower communications overhead than algorithms that guarantee to maintain connectedness.

Report No. 7177 BBN Systems and Technologies Corporation

1. Introduction

In this paper. we explore some of the issues involved in choosing which connections to maintain in a
dense packet-radio (PR) network. Specifically, the goal is to find algorithms or heuristics that maintain
a richly connected network whenever possible or practical. This paper presents a collection of heuristics
from which some subset may be chosen for implementation in the SURAN PR network[4].

In a PR network, the density of PRs in some local geographic region may be higher than is desirable.
This density may or may not be temporary. Dense environments cause problems because too many PRs
can communicate directly among themselves. If the density is high enough, a PR may even run out of
internal table space for maintaining local connections - particularly if it has a limited table size or a fixed
amount of random-access memory.

To conform to table space limitations, the PRs must choose which connections to maintain. If there w.re
no constraints other than computational feasibility, the choices would usually be easy to make. The PRs
could compute a spanning tree for the network to maintain connectedness. and then add in other links to
obtain rich connectivity. However. the SURAN PRs are memory limited. Other constraints are limited
control-data bandwidth, the requirement to operate with and without time slots, the requirement to have
no single point of failure. and the requirement to keep the network connected in spite of the mobility of
PRs. Taken together. these constraints transform '- vly simple problem into a rather difficult one.

Some solutions to this problem are derived in tu aper. All solutions use only local connectivity
information in an explicit manner. Section 2 contains definitions of generally useful terms: other terms
are defined as required. Section 3 defines the problem. Section 4 derives heuristic solutions that work
most of the time. and Section 5 speculates on a back-up procedure that may maintain connectedness even
when the primary methods fail.

BBN Systems and Technologies Corporation Report No. 7177

2. Terminology

A link is defined as a bidirectional one-hop path between two PRs. For a a link to exist between PRs .4
and B, PR .4 must he able to hear PR B. and PR B must be able to hear PR A. Throughout this paper,
the term link also will imply that a reasonable amount of communication can take place between the two
PRs - that is. the bandwidth is sufficient to implement the protocols

Two PRs are defined to be adjacent if. and only if, a link could or does exist between them.

Two PRs are good neighbors if they are adjacent. if each is aware of the existence of the other. and if
each agrees that a link exists between them; otherwise, they are bad neighbors.

In a dense region. sometimes one PR, A, will decide to establish communication with an adjacent PR,
Q. at the expense of some other PR. B. which is currently a good neighbor of A. In this case, before PR
A drops PR B. PR Q will be called the candidate PR. At such time as PR A decides that the candidate
PR should become a good neighbor at the expense of B. PR A is said to exclude PR B. PR B has been
excluded and is the excludee. Furthermore, PR A is said to be active from the moment that it makes
known that it is currently deciding on whom to exclude until the time that it notifies its neighbors about
which PR has been excluded. When a PR is not active, it is passive.

Finally, throughout this paper, the variable L (L > 2) represents the maximum number of entries in a
PR's local connection table. This table is referred to as the neighbor table. Note that L does not have to
be identical for all PRs, although for simplicity we will assume it is so. This assumption has no effect
on any of the algorithms or heuristics in this paper, although some of the observations would have to be
slightly restated if L were not identical for all PRs.

Report No. 7177 BBN Systems and Technologies Corporation

3. Problem Definition

3.1 Maximum Degree Constraint

Conside: the packet radio network as a graph G. Each packet radio (PR) corresponds to one node v7
in G. Each link in the packet radio network corresponds to an edge e. The undirected graph G(V. E)
represents our PR network with V as the set of all nodes tor PRs) and E as the set of edges (or links).
We do not allow self-links at any node in G.

Let the function degree(v), v r.--', be equal to the number of links that terminate (or. equivalently,
begin) at node t. The degreev) for node v is simply the number of nodes adjacent to v. Let .1[=
max[degreev)J. over all v : V. If A < L then the packet radios have enough table space in the
neighbor table for all connections, even in the densest neighborhoods. In this case all adjacent PRs are
good neighbors.

Only in the case when .A! > L must one or more PRs choose which connections should appear un their
tables. In this case they must decide which subset of adjacent PRs will be good neighbors.

3.2 Algorithmic Issues

Any algorithm for selecting adjacent PRs for good neighbors should have the following property: If G is
connected then G'. the graph obtained by deleting various edges in G to satisfy the constraint that no node
has a degree greater than L, should also be connected. In general, G' will not be unique. Many graphs
may be obtained that satisfy the degree constraint. However, there might not be a connected subgraph
of maximum degree L. In this case, no algorithm could succeed in connecting the revised graph.

Transforming G to a G' that satisfies the maximum degree constraint is not terribly difficult. provided
that information about all the nodes and edges is available. A simple way to effect the transformation
would be to find a spanning tree and add back as many other links as possible without violating the
degree constraint. Of course. some spanning trees may violate the degree constraint themselves. The
kind of tree that serves best is one with only a few edges per node.

Implementing such a transformation procedure in the SURAN network, though, has several practical
difficulties.

3

BBN Systems and Technologies Corporation Report No. 7177

First, the computation must be distributed, not centralized. One way to accomplish this is by distributing
global information to all PRs and having each PR run the same centralized algorithm However, a true
distributed algorithm would be more desirable since it would reduce the amount of information that must
be conveyed to each node. Truly distributed algorithms, though, have their own protocols which must be
implemented in the PR. These protocols will use up more of the memory that we are trying to conserve.

Second, communication is unreliable in the PR network. Since distributed spanning tree algorithms[I,2]
seem to require reliable, order-preserving, error-free communication, simple broadcasting is inappropriate.
A reliable link mechanism must be used. but this will impede the timely transfer of information. In a
static network, this delay is unimportant since this computation will not be performed very often. In a
mobile network, though, a delay could prevent the algorithm from converging to an acceptable solution
before the configuration changes again.

Third, in the PR network, not all of the possible links are available simultaneously, since the degree
constraint limits each node to a maximum of L. This may complicate matters since some nodes may
be left out of the spanning tree computation. Ideally. the algorithm would know about all the possible
links in the network. In this case, it is likely that information about all of the possible links may need to
be stored somewhere for some period of time. If it were stored in a distributed manner. the information
would be kept at each node. Thus, unless it is possible to query PRs individually across the net, it seems
that the minimum amount of state information that must be kept at each node would be the purely local
information for that node: the one-hop links in the G network. Keeping this information. though, means
that there is space for listing all the links of a neighbor - space for M entries as opposed to L.

We believe that. given limited memory, it is impractical to implement an algorithm that transforms G
to a connected G' subject to the degree constraint and guarantees to do so in a fixed, but arbitrary,
amount of time independent of the size of G. It should be apparent that implementation of such an
algorithm will use up a sizable amount of memory for the distributed spanning tree (or some similar
algorithm) and its protocols. In addition, user bandwidth is reduced. since the edge information must
be sent reliably around the network. If the largest foreseeable MVI requires less memory than the storage
requirement implementing the above protocols, it would be better to increase L to M! than to implement
the protocols.I

What happens if MI is much larger than L. and there is a limited amount of memory available? If we
are willing to give up the guarantee of maintaining connectedness. there are other alternatives that tend
to keep the network connected and don't require global network information. These alternatives are
discussed in the next section.

'If. however, the network edge information is already available or is needed for some other reasons (e.g.. routine or flow
control). it may make sense to implement this algorithm. This may be advantageous later when you realize that the "largest
foreseeable NI" was too small.

4

Report No. 7177 BBN Systems and Technologies Corporation

4. Local Heuristics

4.1 OMerview and Assumptions

4.1.1 Overview

In this section we propose heuristics for maintaining connected networks. The heuristics are all based
upon the assumption that only local information is available. The local information is obtained from
neighbors to which a node has a current connection. Local information may also consist of information
based on computations performed by a node's neighbors. We assume that it is feasible to store a small
quantity of information calculated by neighbor nodes, but it is not feasible to store each neighbors' list of
neighbors. Each node periodically broadcasts a list of all of its good neighbors, and its candidate (defined
in Section 2), if any. The packet in which this (and other) information is made available is called a PROP
(Packet Radio Organization Packet), in accordance with current SURAN packet radio terminulogy.

Section 4.2 contains some lemmas about graph connectivity that are useful for designing heuristics.
Although the lemmas become increasingly more complex and therefore generate heuristics that require
more coding to implement, the increasing complexity does increase the number of network configurations
that will remain connected. Section 4.3 addresses stability and convergence issues. Section 4.4 presents
some ways one might speed up convergence. Section 4.5 explains how to implement some of the details
in the SURAN PR network.

In Section 4.2. we assume that all packets are received by intended recipients on the first transmission
attempt. In Section 4.5, this restriction is removed. The material in Section 4.2 also contains the
assumption that the execution of the heuristic is perfectly synchronized at all nodes. This synchronization
takes a form that is explained in the next paragraph. This restriction is also removed in Section 4.5.

Whenever the heuristic needs to be run. a major cycle is begun. All nodes begin the major cycle
simultaneously. Once the major cycle has begun. no node will add any new nodes to its neighbor table.
unless the new node was a candidate at the beginning of the major cycle. The completion of the major
cycle occurs whenever all nodes are passive. At this point, the network may accept new links until ihe
start of another heuristic cycle. A minor cycle is a period in which neighbors exchange information
among themselves. This is basically equivalent to a PROP cycle. This nomenclature is not used until
Section 4.3.

Many of the issues that arise in this context of heuristics are subtle and otten elusive. The utilization of set

5

BBN Systems and Technologies Corporation Report No. 7177

notation and graph nomenclature has been necessary to avoid either understatements or overgeneralizations
when stating results. We have rephrased some of the results in less precise but more accessible terms in
those instances where the mathematical formulation is hard to follow.

4.1.2 Assumptions

Each node has a neighbor table that can hold L entries plus one overflow entry. Nodes which have
neighbor tables with fewer than L entries in use will accept any link offered to them. If a node has a
table with L entries in use. it must be more discriminating when accepting an additional link because
it will have to delete a link that is already in the table. When it is necessary to replace a link in the
neighbor table, the new link should be ready to function as soon as it is entered into the table. Therefore
one additional entry is provided, in order to obtain a smooth transition. The neighbor that fills this special
entry is called the candidate. The link with the candidate is not a good (bi-directional) link: neither node
will consider the other as a good neighbor. If this link exists, the node is said to have L + I links, even
though one is only a potential link.

Since the deletion of a link can cause routing changes to propagate throughout the network, the deletion
of a link in the table should only be done when absolutely necessary. When a node. Q. has L entries in
use in its neighbor table and hears from a node. R. to which it currently does not have a link. Q will
determine whether to consider R as a candidate. If Q does not already have a candidate, the following
rulce is used.

Candidate Determination Rule:

Q will consider R as a candidate if, and only if. Q cannot route to R.

Q is said to be able to route to R if R appears in the routing table and the route is marked good.'
Therefore. if Q's neighbor table is full, it will not even consider establishing a link to a node that it can
reach via some other path.

A node can have only one candidate. If Q has a candidate. PROPs received from any node that is neither
one of Q's good neighbors nor Q's candidate are ignored by Q.

Once a node has a candidate. it has a decision to make: either it must remove an entry for some other
node from the neighbor table and substitute the candidate in its place. or it must decide to remove the
candidate from the candidate slot. The following modus operandi is critical. When one node, Q, actually
excludes another node S. then Q expunges (deletes) S from its neighbor table, freeing up one entry. The
candidate R is stored immediately in the just-freed entry. When S receives a PROP from Q indicatinq
that Q has excluded S. S expunges Q from S's neighbor table, and also frees up one enrry. Note that if
S originally had L + 1 entries (including the candidate) and had not (yet) been able to make a decision

'tmplementation Note: If R does nnt apar in the -- '-'ng tiles, it is recommended that Q - t 7 look in R - PROP to see
whether any of Q's current good neighbors appear them.

6

Report No. 7177 BBN Systems and Technologies Corporation

as to which of its neighbors to exclude, then S will not have to make any decision when it hears that Q
has excluded it. S will have L links, since it will emove the Q entry and substitute its own candidate
for that entry.

4.2 Decision Rules

For the reasons stated earlier. connectedness cannot be guaranteed in SURAN. since the cost in memory
and bandwidth is very high. However. it is possible to develop heuristics which will tend to keep the
network connected in most cases. In order to keep the amount of information that must be sent around
the network small, the iormation that the heuristics may use is restricted to information obtainable from
the rouung algorithm and local information. Local information is defined to be information found in a
neighbor's PROP.

The guidelines that follow should provide a reasonable strategy for maintaining connectedness in a
network. This overview provides a framework in which to place the heunstics that are developed
subsequently. Exact definition of terms used in the guidelines and suggestions on how to implement
the procedures in the PR come later. For now. though. assume that an expungable neighbor is one that
appears in the neighbor table of a PR and is not currently of use to that PR.

Guidelines

Immediately upon receipt of a PROP from a PR that does not appear in the neighbor table
of PR X. PR A must take one of the following actions:

1. If X's neighbor table is not full. add the PR to X's neighbor table.

2. Or. if there is one or more expungable neighbors. select one and expunge tdelete) it.
The new PR takes that table slot.

3. Or. if there are no expungable neighbors and if XT currently has a good route to the
new PR. ignore the PR. Use the routing tables to determine if a good route exists.

4. Or, if there is not a good route to the new PR. accept this PR as a candidate. Allow
the link qualities a reasonable amount of time to build to acceptable values before you
actually exclude someone. At that point, if there are no empty slots and no expungable
neighbors. find a neighbor to exclude by using the primary and extended selection rules

defined later in this section.

Let us return to our formulation of the problem in terms of the graph G. and its (generally non-unique
solution G'. We seek rules that allow decisions to be made based primanly upon information local to a
node.

To begin. we cite a concept specified by Bill Miller[3l. Miller found that correct decisions about which
link to discard could easily be made on the basis of localized information i certain cases. An inexact and

7

BBN Systems and Technologies Corporation Report No. 7177

incomplete rendition of his rule is "if you have to exclude someone. exclude a good neighbor of yours
which has the most (good) neighbors in common with you." Unfortunately, the specification given in the
referenced paper (even as later modified in an addendum) manages to produce undesirable selections in
some rather simple graphs. For example, given the configuration in Figure 4.1. his rules can lead to the
state where .4 will permanently exclude B. and C permanently excludes .4. It is certainly true that his
rules can be modified to fix this case, but taking a slightly more general approach will solve some other
problems as well.

A B

Figure 4.1: Assume [. = 4. and {B,C or {.-.B are best candidates for exclusion for .4 and C
respectively.

The basic problem that can occur in Figure 4.1 is that PRs .A and C both need to make a decision to
bnng the number of links down to four. the limit for this example. Unfortunately, the decision that each
PR makes invalidates some assumptions held by the other. In this case. the invalidated assumption is
that .4, B. and C are neighbors.

In what cases can we make decisions without invalidating assumptions held by others? Some reflection
leads to Lemma 4. 1, which says In graphic terms that PR Q can safely remove a link with some PR that
shares a neghbor with Q without causing the network to become disconnected if each of Q's neighbors
is passive.

Lemma 4.1 Assume a PR (say Q) needs to remove a link to sarisfr the maximum degree constraint. Let.V be the set of nodes consisting of Q's qgood neighbors, and let ni = rnax~degreetv)], for all t" .\ If

m <- L. then PR Q can unilaterallv remove a link without causing any neighbor ro become disconnected.
assuming that there is at least one v .I N that shares a neighbor with PR Q.

Note: When a PR obtains the L + Ie link. it must decide to exclude one link to keep the limit within L.

That is why vm L .andnotm -- L.

Further reflection discloses that this lemma is overly restnctive; the conditions set forth are sufficient.
but not necessary. More general lemmas can be obtained.

Report No. 7177 BBN Systems and Technologies Corporation

Lemma 4.2, set forth next, is difficult to understand because it is stated in set-theoretic terms. However.
the sets it defines are used extensively throughout the remainder of this paper. As an aid to understanding.
it is first stated here in terms of active and passive nodes, as defined in Section 2. The following definitions
are synonymous with the ones stated earlier. An active PR is one whose current degree is equal to L + I.
A passive PR is one whose current degree is less than or equal to L. Lemma 4.2 simply states that PR
Q can safely exclude a neighbor S if both PR S and its neighbors held in common with PR Q are all
passive.

Lemma 4.2 Assume a PR (say Q) nccds to remove a link to satisv the maximum degree constraint.
Suppose that its initial choice is (good neighbor; PR S. Let N be the set of Q's good neighbors. Let
the N [C (Neighbors In Common) set for Q and S be the set of nodes where node U -: .V[C if and only
if ' -: .V. and t and S are good neighbors. Thus, the set NIC for S - also written .V C(Q. S -Is

the set of nodes that are good neighbors to both Q and S. Let .A1 = {S} .V!C(Q. S). Finally, let

oin = max[degreett)], for all u .V1. If rnn1 < L. then PR Q can unilaterally remove the link to S
without causing any neighbor to become disconnected if and only if the set N IC is not empty.

It is clear that this lemma is not as restrictive as the previous one when .V is a proper subset of N.
Generally. .V will be a proper subset of N.

Lemma 4.2 broadens the number of cases in which a unilateral decision is safe to make. Unfortunately.
it does not apply in the example of Figure 4.1 mentioned earlier, because rnn 1 equals L + I i(.e.. there
is an active node other than the node making the decision). Let us then consider lemma 4.3.

Lemma 4.3 All of the definitions in lemma 4.2 are included here by reference. The set N [C is assumea
to be non-empty. If PR S is a passive node. and at least one node in the set NJ C(Q. S is also passive.
then it is safe for PR Q to unilaterally discard the link between Q and S.

Proof: If PR Q excludes PR S. a path still exists between Q and S by going through the passive

netighbors) in the set N IC. Thus Q and the set of nodes in .V1 are .nll connected, regardless of any
single exclusion made by each of the active nodes in the set .VIC.

Lemma 4.3 broadens even more the number of cases in which a unilateral decision is allowed since it

allows some of the nodes in the set N IC to be active. However, it still does not apply to that troublesome
example since there is only one passive node among A. B. and C. and the lemma requires two.

Therefore, we state lemma 4.4. which does apply to the example.

Lemma 4.4 All ofthe definitions in lemma 4 2 are included here bv reference. The set .V IC is a.sumed
to he non-empry. If PR S is a passive node, and all nodes in the set V IC are active, then it is imvossbhlh
to unilaterall-v remove the link between Q and S and guarantee that the subgraph consisting or Q and
the set of nodes in .V will remain connected knowing that the other nodes in the set N IC must make a
choice as well.

9

BBN Systems and Technologies Corporation Report No. 7177

Proof. If all of the nodes in the set N IC exclude PR Q, or if all of them exclude PR S, then the sub raph
is not connected.

Although lemma 4.4 applies to the example, it does not explicitly help. However, the solution is close at
hand. Consider three nodes which are totally interconnected (see Figure 4. 1). Further assume that two
of these nodes a. active (A and C). and the other (B) is passive. A., B. and C may have connections
to an arbitrary number of other nodes. Suppose that C must exclude either 4 (active) or B (passive). C
knows that B will do nothing - it is a passive node. Suppose C also knows that A must exclude some
PR. but C has no idea which one A will exclude. What should C do?

From the point of view of C, A can make one of three decisions:

1. A can exclude some other node entirely. In this case, it doesn't matter whether C excludes A or
B. The three nodes, .4, B. and C, will remain connected.

2. .4 can exclude C. In this case. A should make the same kind of decision that C makes since the
viewpoints are equivalent: An active node [now A] must choose to exclude either a passive node
[B] or another active node [C]. Clearly the decision made should be one which would leave the
nodes connected. The choice is obvious. Exclude the active node. This is a satisfyingly symmetric
action, since C will (unilaterally) exclude 4. while A will (unilaterally) exclude C.

3. A can exclude B. In view of the situation obtained from the second type of decision, it makes
sense to never allow .4 (or C) to make this kind of decision.

Thus we arrive at lemma 4.5.

Lemma 4.5 All of the definitions in lemma 4.2 are included here by reference. Assume that the set
.V [C(Q. S) is non-empty, PR S is a passive node, and all nodes in the set .V IC are active. If Q
excludes any node S' from the set NIC instead of node S. then Q and the set of nodes N1 will remain
connected.

Proof. Stated above.

Corollary 4.5 Corollary:

If PR S is an active node, and at least one node in the set NC is passive, then exclude S. PR Q and
the set of nodes , will remain connected.

Lemma 4.5. together with its corollary explicitly solve the problem mentioned earlier.

One case remains that has not been covered by the current set of lemmas. What happens when a node
has several neighbors in common with you, but they are all active'? Further reflection leads to lemma
4.6, which will resolve most problems that arise when all nodes in the set .Vi are active.

10

Report No. 7177 BBN Systems and Technologies Corporation

Lemma 4.6 The set nomenclature used here is compatible with that of lemma 4.2. If all nodes in some
set N are active and there is a neighbor S in N1 which has two or more good neighbors in common
with Q, [see Figure 4.31 then it is always possible to remove links in such a way as to keep the graph
connected. Equivalently, if the cardinaliw of the set .V is three or greater, then it is possible to keep the
graph connected.

Proof. Keep the link between the PR S and Q. and ensure that S and Q exclude different neighbors in
the set N IC(Q, S). With this proviso, the decisions made by the remaining neighbors in the set N IC
are irrelevant. [In Figure 4.3, Q would exclude either B or E. and S would exclude the other one.]

Note that this lemma does not apply to the case where the cardinality of the set N is two or less. No
unilateral or negotiated decision can help in this case.

We are now in a position to state the Primary and Extended Selection Rules mentioned in the Guidelines
at the beginning of this section.

The Primary Selection Rule is consulted first when it is necessary to select a node for exclusion. Unlike
Miller's selection rule [op cit.], the rule we use does not select the neighbor with the highest number of
good neighbors in common. Why? Suppose that we used Miller's rule. Consider the case where the
selected neighbor is an active node, and none of the nodes in the set NIC are passive. In that case all
nodes in set .Vj are active. Certainly, we would be much better off finding an N, set that contains at
least one passive node, even if it happens that the PR that we choose to exclude in that case has fewer
neighbors in common with Q than the original choice.

Primary Selection Rule:

Let a PR. Q, choose the PR S with the highest number of passive neighbors in common
with Q as the PR for exclusion.

Note that our new selection rule incorporates lemmas 4.2, 4.3, and 4.5 by definition. Now, if it is the case
that none of Q's neighbors has any passive neighbors in common with Q, we use the extended selection
rule.

Extended Selection Rule:

One of the following must be true. perform the associated action:

I. None of Q's neighbors has any neighbors in common with Q. As far as Q can determine.
any decision that Q makes will partition the network. The state of the neighbor nodes
is irrelevant in this case. [See Figure 4.2]
Action: Exclude the candidate in order to maintain routing stability.

2. At least two of Q's neighbors have at least one good neighbor in common with Q. All
of them will be active.
In this case, one of the following must be true:

II

BBN Systems and Technologies Corporation Report No. 7177

(a) Q has at least one neighbor with at least two good neighbors in common with Q.
[See Figure 4.31
Action: Use lemmas 4.6 and 4.7 to resolve the problem. Lemma 4.7 is explained
subsequently. In Section 4.4, the 2-cycle resolution process, which is based upon
these two lemmas, is shown to be a superior method for resolution.

(b) Q has two or more neighbors with one neighbor in common with Q, but no
neighbors with more than one neighbor in common with Q. If none of these active
neighbors goes passive, then any action Q takes could partition the network. [See
Figure 4.4]
Action: Do not exclude anyone; wait indefinitely. "Wait" means that the PR
repeatedly executes guidelines (2), (3), and (4). If the 2-cycle resolution process
is used, indicate the RN node as NULL. While counterintuitive, it is the correct
action (explained in lemma 4.7). It is roughly equivalent to not making a decision
(the candidate will be frozen out) until someone else makes a decision, or a state
change occurs. Either some one of the three nodes (maybe yourself) will eventually
go passive - leading to a solution - or none of the three nodes ever will.

\1/
E

Q- D

I I

Figure 4.2: (L = 4. Q active; .4, B, C. D, E states irrelevant. Candidate can be any one of A. B. C.
D. E.)

There is one point that has not yet been touched upon. Lemma 4.6 depends upon the fact that nodes Q
and S agree to exclude different neighbors in the set NIC(Q, S). As yet, no mention has been made
about how Q and S figure out that they need to make a joint decision. Further investigation reveals that
this is not just an implementation detail, maintaining connectedness in the network depends upon proper
application of lemma 4.6. Also. the discussion on convergence in the next section will rely on some
concepts that are implicit in lemma 4.6. Hence, the following discussion and lemma.

Lemma 4.6 lends itself to easy implementation in a distributed environment. Given that S and Q mutually
recognize each other (lemma 4.7). they can easily ensure that they exclude different neighbors without

12

Report No. 7177 BBN Systems and Technologies Corporation

/I I

Figure 4.3: L = 4. Q. S, B, E active; C. D states irrelevant. Q has neighbor S that satisfies 2a

further communication. Both S and Q know that all nodes in the set NIC (which is now the same set
for both PR S and Q) are currently active. Since S and Q have 2 or more good neighbors in common.
they will use lemma 4.6 to resolve the deadlock. S and Q will not exclude each other. Q and S each
order the nodes in the set NIC from high to low based on some immutable metric (such as D number).
Q and S also order Q and S. Have the larger of nodes S and Q exclude the largest of the nodes in
the set N IC. Have the smaller of the nodes S and Q exclude the second-largest of the nodes in the set
,V [C.2

After these exclusions take place. all remaining nodes in the set N IC will be able to make independent
decisions on which nodes to exclude since S and Q will both appear passive. The two excluded nodes
must wait to be excluded since they don't have enough information to be able to independently compute
that they would be the nodes chosen by S and Q. 3

Other nodes in the set NIC may also have to wait for S and Q by the same reasoning. However, this
wait requirement for extended selection rule part 2a dovetails nicely with the action that must be taken
in part 2b.

The final task is to determine how S and Q will recognize each other. This is an important determination
because an active node may have several possibilities for S. It matters which S is chosen by Q because
we need to guarantee that some S and Q in the network will recognize each other. Lemma 4.7 will show
that one can arrange the selection so some pair will recognize each other.

Implementation note: Because of unreliable communication. excluding the smallest instead of the second-largest node should
be safer.

3N.B. WC" nodes could compute whether or not they would be excluded by S and Q if all nodes kept a list of all of their
immediate neighbors' neighbors.

13

BBN Systems and Technologies Corporation Report No. 7177

QD-

Figure 4.4: L = 4. Q, A, B active; C, D. E states irrelevant. Q has neighbors .4. B that satisfy 2b

Lemma 4.7 Assume that node Q in the network must invoke the Extended Selection Rule. The actions
specified in the next paragraph are sufficient to cause some pair of nodes in the network to recognize
each other. "Recognize each other" includes the obvious case (discussed in the next few paragraphs)
where some pair of nodes explicitly recognize each other. It also will be taken to include the case where
node Q explicitly determines that the node it recognizes can make a safe decision by invoking the primary
selection rule.

If Q must invoke the Extended Selection Rule, then Q is active and has no neighbor with one or more
passive neighbors in common with Q. [Loosely speaking, all of Q's neighbors are also active.1 Let Q
choose (recognize) S if S has the maximum number of neighbors in common with Q. If there is a tie
for S, let Q choose the S with the highest ID. Q must announce the node S in Q's next PROP. and
must indicate that the node S was recognized, as opposed to excluded. Note: The maximum number of
neighbors held in common between Q and S must be greater than one for this lemma to apply.

Proof: If Q is invoking the Extended Selection Rule, then the node S that it chooses (recognizes) is
active. Active nodes must either invoke the Primary Selection Rule or the Extended Selection Rule. If
S invokes the Primary Selection Rule, then S can immediately exclude some PR and will announce this
fact. Q will hear it, and thus explicitly determine that "the node it recognizes can make a safe decision
by invoking the primary selection rule". This satisfies one of the two cases of recognition.

If S invokes the Extended Selection Rule, then S also announces the ID of the node that it is rry in to
recognize. S will always be able to recognize at least one node. Q, because Q is a neighbor of S. If S
announces Q, then this satisfies the obvious recognition case. If S announces some node other than Q.
then we can inductively apply this lemma at the node that S announces. This induction continues until
we reach two nodes that "recogni:e each other". Note that we create a chain of nodes in this case.

14

Report No. 7177 BBN Systems and Technologies Corporation

Each node recognizes a neighboring node. and that neighboring node recognizes one of its neighboring
nodes.

Observe that it is impossible to create a circular chain with more than two nodes. The chain must have
an end: no cycle can exist. If such a cycle existed, then either it consists of nodes that all have the same
number of neighbors in common with the subsequent node, or it consists of nodes with a monotonically
non-decreasing series of number of neighbors in common with subsequent nodes. The former is impossible
because we chose to point to increasing ID numbers in case of a tie: the latter is impossible in a cycle.

We conclude that some two nodes will always point to each other. There may or may not be other directed
arcs that point to those two nodes. This set of connected directed arcs is called a backbone. Graphically,
a backbone is a tree with all arcs pointing toward the root. The root consists of the two nodes that
recognize each other. It is possible for more than one backbone to exist, but they can not, and will not,
intersect - no nodes will be held in common.

It is worth elaborating upon the consequences of this lemma. Whenever part 2a of the Extended Selection
Rule must be invoked, lemmas 4.6 and 4.7 will be used. Therefore, at least one backbone must exist in
the network. The length of a backbone - the maximum depth of its tree - is determined by the network
configuration. If the length of the backbone is greater than one, then the decision that the first node(s) -
the leaf or leaves - in the backbone must make is held up until the result of the decisions of successor
node(s) are made available. The results propagate out from the core of the backbone. Why? Once
the two core nodes (Q and S) of the backbone make their decisions, they become passive. Once Q
(or symmetrically, S) is passive, all adjacent (active) nodes now have a passive node in common with
some subset of the adjacent nodes. Now, Q's (and S's) neighbors may invoke the Primary Selection
Rule because Q (and S) will be passive. In particular, any neighbors who may have been forced to wait
because of Extended Selection Rule part 2b can now make a safe decision.

4.3 Stability and Convergence

Suppose that you freeze the network at time t. Run the heuristic to enable nodes to choose which links
to keep. This is called a major cycle. Running the heuristic may require many exchanges of information.
These exchanges are called minor cycles. At least one minor cycle is required so that all nodes can
determine the state of their neighbor nodes at time t.

How long will it take for the heuristic to run? Since only active nodes require using the heuristic, it
suffices to look only at those nodes. An active node can be classified as one of the following types:

0. All of its neighbors have exactly 0 neighbors in common with it.

In this case. the node must locally partition the network. Thus an active node in this case can make
its decision in one (minor) decision cycle.

15

BBN Systems and Technologies Corporation Report No. 7177

1. None of its neighbors have more than 1 neighbor in common with it. and at least one (technically
two) neighbors have at least I neighbor in common with it.

If none of these neighbors are passive, the number of cycles depends on the network configuration.
This is discussed below.

2. At least one of its neighbors has at least 2 neighbors in common with it.

The heuristic will solve this case. However, if none of the neighbors are passive, then the number
of cycles depends on the configuration. See below.

If there are backbones (see lemma 4.7 for definition), then it could take a number of (minor) decision
cycles equal to the length of the longest backbone for the heuristic to converge to the final solution.
Backbones may be present when active nodes that are classified as Type 2 are present.

If there are nodes that can be classified as Type 1, it is possible for the following situation to occur in
some configurations. For brevity, we refer to the group of three nodes that fall into this category as
dependent trios when all three nodes are active. [In Figure 4.5, nodes A, B, and C form a dependent
trio.]

Consider a set (or sets) of three active nodes (A, B, C) with the following characteristics [see figure 4.5]:

" All of A's neighbor nodes (except for the other two nodes in the trio A-B-C) are completely
partitioned from each other. There is no path of any length from one neighbor to another, other
than through A. The same condition holds for B and C.

" In addition, nodes .4. B, and C are connected by three links.

" These three links are the only way that nodes connected (directly or indirectly) to any one of the
three nodes can communicate with nodes connected (directly or indirectly) to one of the other two
nodes.

Since the nodes are active, they must drop one link. However, there is no way for the three of them to
make a choice and keep all of the collective nodes connected.

Now, let us pick one of the three nodes (say A). Suppose that two of A's neighbors (other than B and
C) are active. Call those two neighbors X and Y. Suppose further that a link existed between X and Y
[See Figure 4.61.

Considering only the links between .4, B, C, X, Y, it is impossible to have A. B. C. X. V' drop links
and keep them all connected. Suppose, though, that X finds out that it can drop a link (other than the
ones with Y or A) and the net will not become disconnected. Then X would do so and would revert to
being passive. The links with Y and A remain. A and Y would be delighted to hear this news because
they could then exclude each other (both would remove the A-Y link) [See figure 4.7].

16

Report No. 7177 BBN Systems and Technologies Corporation

X Y H

N!N

W A 0j

zP V_ K

Figure 4.5: L = 4. A, B, C active.

X Y H

z P_K

R /IT

Figure 4.6: L =4. A, B, C, X, Y active. Other links for X. Y not shown.

Each would revert to a passive state since each has made a decision. Next. B and C would be delighted
to hear that A is passive. They could remove the B-C link (See Figure 4.8 1.

This is an example of a dependent chain. It consists of linked trios of nodes, where the nodes in each
tho have each other as the most likely nodes to exclude. If any node in the chain turns passive (such as
X did in the example), then the chain can be resolved safely.

Thus, if there are linked trios in the network, it could take a number of decision cycles equal to the length
of the longest Aependent chain for the heuristic to converge to the final solk'..

If both linked trios and backbones are present, tdien convergence could take a number of decision cycles
equal to the sum of the maximum number of cycles spent to resolve either separatr !y. At worst, this
number will be equal to one-third of the number of nodes in the network.

17

BBN Systems and Technologies Corporation Report No. 7177

X -Y H

W A

RT

Figure 4.7: L = 4. B. C active. A. Y passive after removal of A-Y link. Other links for X. Y not
shown.

Once this number of (minor) decision cycles has passed. we can allow the network to accept more links.
We can then repeat the major cycle. The network will only be unconnectable based on local information
if some active node is ultimately classified as Type 0, or Type I with no passive neighbors in common.
Hence. each major cycle leads to a stable configuration.

Oscillations across major cycles are impossible because a node only considers a non-good neighbor node
as a candidate if that node does not appear in the current routing tables. For a candidate to be accepted.
a node only removes one of the existing L links if it can determine that the link can be removed without
losing a path to the node on the other side. If this can not be determined, the candidate is not accepted.
Thus, each node will only remove links if it can strictly increase the number of nodes it (and the network.
or the current partition) can reach.

4.4 Speeding Up Convergence

The term backbone was defined in Lemma 4.7. Section 4.2. It was shown that links could be removed
in a way that always kept the network connected. However, if Lemma 4.7 is implemented in the manner
in which it was presented. then the speed at which the network stabilizes becomes an issue. Depending
on the length of the backbone, it could take many cycles for the chain reaction to reach an end.

The speed of convergence also depends upon the length of dependent trio chains, as was shown in the
previous section. Resolving such a chain also requires a chain reaction, so to speak.

It would be desirable if all of the nodes along the backbone could be forced to act simultaneously. or
nearly so. The 2-cycle resolution process accomplishes this goal in two cycles, regardless of the length
of the backbone chain(s).

18

Report No. 7177 BBN Systems and Technologies Corporation

X --Y H

W A Cj
Z / K

P-B

R /IT

Figure 4.8: L = 4. B, C now passive after removal of B-C link. Other links for X. Y not shown.

Resolving dependent trio chains quickly is also desirable. Unfortunately, it is not possible. The inability
to quickly resolve this situation is not a critical problem, though. In any real network configuration. a
large L implies that long dependent trio chains are unlikely to occur.

2-Cycle Resolution Process:

The 2-cycle resolution process is invoked only by active nodes that have no neighbor with
one or more passive neighbors in common. but have at least one neighbor with at least two
neighbors in common. Q and S (see Lemma 4.7, and also Figure 4.3) will run this process.
as will any other active node which satisfies the prerequisite conditions.

Note: This process is used only when indicated by the Extended Selection Rule.

For simplicity, this algorithm is run from "your" point of view. One may substitute -Q [is]"
for the word "you (are]", and "Q's" for the word "your". Your (Q's) recognized node (R.V)
is your neighbor with the largest number of neighbors in common with you. In case of a tie,
pick the highest ID from the set of nodes that tied. Note: In the nomenclature of Lemma
4.7. Q's RN is S.

There are only two cases for you to choose between.

1. Lf your RN explicitly recognizes you, then you have mutually recognized each other.
You are the core of a backbone.
Action: Apply lemma 4.6.
Note: All of the nodes in the set .V [C are bystanders to your decision. Bystanders can
determine that you and your RN have mutually recognized each other.

2. The (active) RN that you recognize doesn't explicitly recognize you.
Action: Arbitrarily exclude some node in the NIC set that corresponds to the link
between you and your RN. The only restriction is that you cannot exclude a node that
has you designated as its RN.

19

BBN Systems and Technologies Corporation Report No. 7177

It should be apparent why this is called the two-cycle resolution process. All nodes have already ex-
changed information in PROPs. At this point, all nodes know whether their neighbors are active or
passive. In the first cycle, each active node indicates that it is excluding some node via the Primary
Exclusion Rule, or it announces its RN. After this exchange, all active nodes running this process figure
out whether case I or H applies and perform the associated action. The decisions are broadcast in the
second cycle. After this exchange, some bystanders have been excluded (and become passive), and the
others can unilaterally exclude a node since passive neighbors are present. Of course, it takes a third
cycle for everyone to find out that every node is passive, but no decisions are still outstanding.

It may not be apparent why this process works. Below, the two possible states are reproduced. It is
shown that the net remains connected.

Correctness Proof of 2-Cycle Resolution Process:

1. If your RN explicitly recognizes you. then you have mutually recognized each other.
You are the core of a backbone.

(a) You are not also a bystander; no two of your immediate neighbors are each other's
RNs.
It is obvious that Lemma 4.6 will keep you, your RN., and the NIC set defined by
your choice of RN [i.e., N [C(you, yourRN)j connected. For your other active
neighbor nodes:

i. If you are designated as its RN., that node will not break the link between you
and it. since it is part of the backbone.

ii. If you are not its RN, then it cannot break the link with you because:
A. you have no passive neighbors in common with it, so it cannot use the

Primary Selection Rule to exclude you, and
B. its RN, if it has one, is not one of your neighbors, so you are not one of its

bystanders.
(b) You are also a bystander.

In this case, your recognized node has recognized you, and you have links with one
or more pairs of nodes that recognize each other (See Figure 4.94). Any decision
made by a pair of nodes that recognize each other will cause you to relinquish at
most one of those two links. Your own decision will only cause you to delete one
link. Even if your decision causes you to delete a link that some pair thought that
you would keep (via their mutual negotiation from lemma 4.6), yet another path
among that pair of nodes, you. and your recognized node must exist. (In Figure
4.9, both the SB link and the QB link will be deleted. However. Q, S, and E can
still reach B and A via C.) This is true because not only were you a bystander to
their decision. but one of the pair of nodes had to have been a bystander to your
decision as well. The net remains connected.

4About Figure 4.9: Technically. QS and BC cannot recognize each other by the rules given n this paper unless L = 5 and
some additional nodes are added. However, defining L = 4 and allowing QS and BC as pairs does not make a difference and
results in a less cluttered diagram.

20

Report No. 7177 BBN Systems and Technologies Corporation

2. The (active) RN that you recognize does not explicitly recognize you.

(a) The RN you designated has an excludee by the Primary Selection Rule.
The RN you designated has some neighbor with one or more passive neighbors
in common. That neighbor is not you. nor any other neighbor in your ,V IC set.
Therefore, the link between you and your RN will remain.
The neighbor that you choose to exclude will either be waiting to be excluded, or
will make a safe exclusion. It will not exclude your RN unless it can guarantee
that it has an alternate path that does not go through you.

(b) The RN you designated has an RN.
The RNV that you designated has no neighbors with passive neighbors in common
with itself. The RN that you designated has at least one neighbor (you) with two
neighbors in common, because you were able to designate it as an R.V. Your R.V
will also be running this procedure. The net remains connected by virtue of the
Backbone Lemma that follows.

/a

C

A
I

Figure 4.9: L = 4. E. S, Q, B. C, A active: Q, S mutually recognized. Q agrees to keep B, S agrees
to keep E. B. C mutually recognized. B agrees to keep .4. C agrees to keep Q.

Backbone Lemma:

21

BBN Systems and Technologies Corporation Report No. 7177

Let S be Q's RN, and T be S's RN. We have alreadv shown that there can be no cycles
of length greater than two in a backbone. If Q and T are the same node. then Q and S
mutually recognized each other; lemma lemma 4.6 and 4.7 solve that problem. We confine
ourselves to the case where Q and T are distinct nodes.

Q can always break a link with one of the neighbors in its N/C set, as long as Q doesn't
break a link with a node that considers Q as part of the backbone.

Proof: From Q's point of view. the set ,VIC(S. T) either has

1. no nodes in common with the set N IC(Q. Si, or

2. at least 1 node in common with the set NIC(Q. S).

Q can not always tell which of these two alternatives is actually true: it does not matter. In
case 1. S will always break a link with a node outside of NIC(Q. S4. Regardless of whether
S and T cooperate. S breaks a link with a node in the set N IC(S. T). It is clear that Q can
then break a link with any node in .VIC(Q, S) without disconnecting the network.5

In case 2, consider a node J held in common with both N.IC sets. It must be the case that
J has 3 connecuons to this section of the backbone - one to Q, S.and T. If Q ey,.. ludes J.
2 links to the backbone remain. If S and T cooperate. then J will remain connected to at
least one of them. If S and T aren't cooperating, then S could also exclude J. T cannot
exclude J. unless J is also held in common with T's .VIC set - VIC(T. - where * is not
Q. S. or T. Induction shows that J will never be severed from the backbone. since the final
two backbone nodes always cooperate.

It can be seen that the two-cycle resolution process allows us to speed up the convergence enormously.
In fact. convergence to a stable solution can be guaranteed in only two cycles if we ignore any dependent
tro chains that might exist. In passing, it is noted that some A., B. C trios can be resolved properly in
one cycle, because one of the trio members (say B) may have announced an excludee node or a RN
node. The other two, .4 and C, would hear this simultaneously, and could exclude each other. .A. 3. and
C all remain locally connected. A prudent approach for tmos with no one-cycle resolutions would be to
simply exclude the candidate.

4.5 Implementation in SURAN

Some procedures and terms have not been accurately defined. Many of these could be considered
implementation details and, thus. have been relegated to this section. However, two restrictions make the
heuristics in this paper appear to be rather difficult to implement in the current SURAP 1.0 protocols.
The first restriction is that we assumed that all communication was reliable. The second restrction is
that all nodes in the network be synchronized. Before explaining terms used earlier in Section 4 and
specifying some implementation details, it is necessary to dispose of these two restrictions.

Irnplementation Note: It might be especially desirable for Q to break with a node in VIC(Q. S which reported a max
".'C" of one. since that node is waiting for a decision (from some node) anyway and cannot be a part of the backbone

22

Report No. 7177 BBN Systems and Technologies Corporation

Unreliable communication is rather easy to deal with. at least in a probabilistic sense. Do not send
information out in only one PROP. Send the information in several PROPs. Increasing the number of
PROPs increases the likelihood that the PROP is received by all intended recipients. All PRs vould have
identical repeat counts. This approach is currently taken when it is necessary to notify neighbors about
bad routes.

Synchronization is trivial to deal with. It is not necessary. It was an artifice introduced to talk about
convergence and stability, and to simplify the initial presentation of the heuristic. Consider that passive
nodes do not run either the Primary or Extended Selection rules. They do not need to be synchronized.
An active node that can use the Primary Selection rule does not need to be synchronized with any other
node since there is at least one passive neighbor that the active node depends upon. Finally, an active
node that must use the Extended Selection rule will only do so because all of the relevant neighbors are
active. If they are all active, then the relevant nodes will also be running either the Primary or Extended
Selection rules,

4.5.1 Expunuability

We define an expungable neighbor as one that appears in a PR's neighbor table and that is neither a
good neighbor, nor a neighbor with which a link is in the process of being brought up for the first time.
This differs slightly from Miller's bad neighbor definition in rule 0. We consider the neighbor associated
with a link for which no quality value has been reported and which was not brought up in a reasonable
amount of time as a bad neighbor, and therefore expungable: his rule doesnt.

The above definition implies that we should be able to tell when a link is in the process of being brough,
up for the first time. In addition, it is advantageous to indicate when too much time has been spent trinzg
to bring up a link without success. Thus a link in the process of being brought up for the first time i.

not expungable. unless too much time has gone by.

Links that are being brought up for the first time can be distinguished by counting PROPs. When a ne.
neighbor is added to the neighbor table, initialize an associated counter to some predetermined value. Thi,
value should be somewhat greater than the minimum number of PROPs that must be exchanged before

the quality builds up to an acceptable level. Each tume that a PR broadcasts a PROP, it should decrease
the counter for every neighbor (but not below zero). If the counter has reached zero and the neighbor has
not been marked good, then the neighbor is expungable. It is important to update the counter on broadcasi
PROPs instead of received PROPs so that missed PROPs do not adversely affect the counters. We preter
a counter approach to a timer approach because timers are burdensome to maintain. The neighbor table
will need expanding to keep track of these quantities for each link.

The reason to distinguish expungable neighbors from non-expungable neighbors is that wke intend never
to delete entries from the neighbor table unless necessary. We only consider it necessary to delete an
entry if the neighbor table is full and we hear a PROP from a PR not currently in the neighbor table.

23

BBN Systems and Technologies Corporation Report No. 7177

4.5.2 Active/Passive States

The definitions for passive and active neighbors remain the same. However, these distinctions are only
useful if a node's neighbors know the current state of that node. If these suggestions are to be implemented.
we propose that nodes announce their state in each PROP. If the maximum neighbor size is identical for
all PRs. an active PR can be distinguished by counting the number of immediate neighbors reported in
its PROP. However. we prefer an explicit indicator so that radios with differing amounts of memory can
have different maximum neighbor table sizes.

A node announces that it is active when it obtains a valid candidate, and remains active until that link
becomes good. or until that link has spent too much time being brought up. In the former case. it attempts
to exclude a node based upon the exclusion rule(s); in the latter case, it simply drops the candidate. In
either case, it becomes passive when it drops a node.

We propose that when a node changes from the active to the passive state it should remain passive for
several PROP cycles, even if it hears a PROP from a PR that should become a candidate. This will
increase the likelihood that its neighbors will find out the correct state. Of course, during that time. it
should not fill the candidate slot. The neighbor table should be expanded to keep track of the state of
each neighbor (passive or active). Provision must be made to keep track of a PR's own state, and the
number of PROP cycles during which the node must remain passive before being allowed to change to
active.

One should also keep track of the number of passive neighbors i common in the neighbor table on a
per-node basis. There are two ways to do this. The number of passive neighbors held in common can be
updated for a particular neighbor either only upon receipt of that neighbor's PROP or potentially upon
the receipt of every PROP. Because PRs do not keep track of the neighbors of our immediate neighbors
and PROPs can be missed, a tradeoff is involved in choosing one method or the other. Neither updating
methods will be 100% accurate all of the time. The first method might reflect reality only for a single
instant m each PROP cycle. The second metod attempts to reflect reality continuously, but it is possible
for it to be wrong upon occasion.

The first method causes updates for a PR to occur only on the receipt of that PR's PROP. Updating only
upon receipt of that PR's PROP implies that changes in the state of common neighbor nodes are only
perceived once each PROP cycle. This means that the information in the table isn't always as current as
possible.

The second method causes updates to occur upon the receipt of every PROP. In this case, the number of
passive common neighbors can be kept current by adjusting all affected counters by plus or minus one
whenever a received PROP indicates that its sender changed from active to passive, or from passive to
active, respectively. The affected counters are the counters for all neighbors in a PR's neighbor table that
appear at level one in the received PROP. As in the first method, the PR explicitly sets the counter for
the sender of the PROP. This is necessary to correct errors that may have been erroneously introduced by
using PROP data from a new neighbor in common. The following example shows why this is necessary
by presenting two cases that are indistinguishable from the point of view of PR .4.

24

Report No. 7177 BBN Systems and Technologies Corporation

Example

Assume tI < t, < t 3

At instant t1. PR A knows that PR B has 2 passive neighbors in common (say C or D: A
doesn't keep track of which neighbors they are). At instant t2 a PROP from C is heard and
C indicates that it is active. 4 realizes that C was passive before, and that B is listed in C's
PROP and decrements the counter associated with B from 2 to 1. This is proper and correct.

Suppose that at tI, PR X was a good neighbor of A, but not of B. Further suppose that
sometime between instant tj and t3, X and B become good neighbors. At t3, .4 hears a
PROP from X. If X were passive at tj but active at t3, then A will err in changing the
counter from I to 0. This error occurs because A cannot distinguish this situation from the
one in which A received a PROP from C. In reality, the counter should not be changed.
since the true number of passive neighbors held in common is still 1 (neighbor D.

4.5.3 Candidate Indicator

When a node has a candidate neighbor. that neighbor must appear in the PROP so that link quality
information can be exchanged. It would be preferable if the PROP entry for a candidate was specially
marked so that other nodes will not use that node in any alternate path calculations. Other nodes would
not consider that node because it normally does not have good link qualities in both directions. However.
it is better to explicitly indicate the candidate in order to minimize future problems. and to keep a rare
boundary condition from causing any temporary problems.

The candidate slot could be a known entry in the neighbor table, or the slot could be separately maintained.
As previously stated, the candidate PR must appear in the PROP. regardless of where it is stored.

25

BBN Systems and Technologies Corporation Report No. 7177

5. Areas for Further Research

In the Extended Selection Rule of Section 4.2, we stated that the candidate should be excluded for
routing stability. However, this guarantees that the candidate is locked out from our partition unless
changes occur elsewhere. If no further changes occur, the candidate and all nodes i its partition are
permanently locked out from the network. Some network topologies, like the repeater-on-a-hill topology,
do not allow for a non-partitioned network given neighbor table size constraints. Sometimes, though, the
heuristic may have simply chosen the wrong set of neighbors. Continuous perturbation of the non-optimal
solution by accepting the candidate and randomly rejecting some other neighbor will eventually lead to
some conncted solution if the topology allows it. This perturbation, though, causes permanent instability
for repeater-on-a-hill topologies.

It is possible that both of these problems can be avoided by allowing unconfirmed routes. Currently, a
reporting PR is given for each PRID that can be reached via a good route. A good route is one which
possesses logical links at every hop. However, it is possible to reach a PR as long as physical links exist
at every hop. We suggest that it is possible to implement a last-ditch mechanism that will coexist with
whichever logical neighborhood heuristic is implemented. The idea behind this mechamsm is to indicate
that an unconfirmed route may exist to PRs that can not be reached via a good route.

We believe that only minor changes to the routing table and in PROP content are necessary. Currently.
the routing (tier) table entry for a PR contains a reporting PR, its tier level, and a good/bad route indicator.
Adding an 'unconfirmed' indicator may allow the PRs to route to neighboring PRs even when there is no
room in the neighbor table for a logical link. The PROPs would also need to be expanded to distinguish
between IDs of PRs with good routes and IDs of PRs with routes that are unconfirmed. This requires
very little additional code, and does not require much expansion of the routing table or the PROP packet.

Under this scheme, we would continue to reject the candidate for routing stability if no safe exclusion
were possible. However, all of the (non-reachable) PRIDs in the PROP would be added to the routing
tables and flagged as unconfirmed routes. The candidate would be listed as their reporting PR. Packets
destined for a PRID with an unconfirmed indicator are sent to its reporting PR. Failure would cause the
route to be marked as bad; success does not change the indicator.

The tier routing update algorithm should operate under the presumption that a good route of any length is
preferred to any unconfirmed route. Note that a good indicator should only be changed to bad. although
a bad or unconfirmed indicator can be changed to either of the other two indicators as circumstances
demand. For example. an unconfirmed indicator should be treated just like a good indicator when a
PROP is received with PRIDs in the bad tier data: those PRIDs for which the PROP receiver has the

26

Report No. 7177 BBN Systems and Technologies Corporation

PROP sender listed as the reporting PR should have the indicator changed to bad. The changes that ought
to occur in all other situations follow from the presumption of good over unconfirmed.

More thought needs to be given to this approach, but it appears to have a good deal of potential for
maintaining connectedness when using tier routing.

27

BBN Systems and Technologies Corporation Report No. 7177

Acknowledgements

I am indebted to Dr. Greg Lauer for the many discussions we held and for critiquing several versions of
this paper. His ability to focus in on weak areas in the early formulations was invaluable. I would also
like to thank Marian Nodine and Jim Ong for their review efforts. Both of them spent hours working
through the examples and lemmas, and made many useful suggestions.

28

Report No. 7177 BBN Systems and Technologies Corporation

Bibliography

[I I Y. Dalai. A distributed algorithm for constructing minimal spanning trees in computer-communication
networks. In Proceedings of the Fifth Texas Conference on Computing Systems, October 1976.

[2] F. Glover and D. Kingman. Finding minimum spanning trees with a fixed number of links at a node.
In B. Roy. editor, Combinatorial Programming: Methods and Applications, September 1974.

[31 B. Miller. Limiting Logical PR Neighborhood Size. Technical Report SRNTN-43. Rockwell, Inc.,
1986.

[41 J. Tomow. Functional Summary of the DARPA SURAPI Network. Technical Report SRNDOC-9.
SRI, September 1986.

29

